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Generation of Nonminimum Phase
From Amplitude-Only Data

Tapan K. Sarkar,Fellow, IEEE, and Bin Hu

Abstract—A method is presented for the generation of nonmin-
imum phase from amplitude-only data. The nonminimum phase
is generated utilizing the principles of causality and the Hilbert
transform. The application of the theory has been applied to
some antenna radiation-power patterns and to measured transfer
functions of microwave filters to illustrate the applicability of this
approach.

Index Terms—Amplitude-only, Hilbert transform, nonmini-
mum phase.

I. INTRODUCTION

RECONSTRUCTION of phase from amplitude-only data
is an important problem. For minimum phase systems,

the reconstruction of phase from amplitude-only data is rel-
atively straightforward as the phase response is given by the
Hilbert transform of the log of the magnitude of the amplitude
data [1]–[3]. In other words, the minimum phase as a function
of frequency is given by and is expressed as

(1)

where denotes a principal-value integral, as the integrand
has a singularity and is not integrable. The integral in (1) only
exists in a principal-value sense. However, this property given
by (1) of a linear-time invariant system does not hold if the
system is not minimum phase. The minimum-phase property
of a transfer function refers only to all the zeros of .
The zeros must lie in the left half with
of the -plane. If the system is not minimum phase (i.e., when
some of the zeros of the transfer function may be on the
right half-plane), then (1) does not hold. Most electromagnetic
systems have a nonminimum phase response. Hence, (1) has
very little use for the practical problems. However, there is a
more general result of the Hilbert transform, which is based on
causality. This result is valid for a nonminimum phase system.
We utilize the principle of causality to do nonminimum phase
realizations. The principle of causality implies that the function

for and is nonzero otherwise. It is important at
the onset to point out that the phase realization (be it minimum
or nonminimum phase) is not a unique problem. A linear-phase
term may be added to any phase function without altering its
amplitude spectrum. This is because the addition of a linear
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phase to the phase of the transfer function with a uniform
amplitude is equivalent to a pure delay in the time domain.
Since we are dealing with linear-shift invariant systems (as
the response of the system is the same independent of the
time origin), changing the impulse response of the system
by a time shift does not alter the transfer function of the
original system, except that the phase spectrum is modified by
a linear-phase function. The slope of this linear-phase function
is equivalent to the time delay. Also, the amplitude spectrum
of the transfer function is unaltered by providing a delay to
the impulse response of the system at hand.

In Section II, we present the more general amplitude–phase
relationship of a nonminimum phase system based on the prin-
ciples of causality. In Section III, the computational method
is outlined. In Section IV, we describe the numerical imple-
mentation of this technique. Section V describes how this
technique can be applied for the realization of nonminimum
phase from the field power patterns. Typical numerical results
are presented in Section VI, followed by a conclusion in
Section VII.

II. PROPERTIES OFTRANSFER FUNCTIONS

BASED ON CAUSALITY

A function is said to be “causal” if

whenever (2)

These type of functions arise in the study of causal systems
and are of obvious importance in describing phenomena that
have well-defined “starting points.”

Let be a real causal function with Fourier transform
, and let and be the real and imaginary parts

of . Then,

(3)

Since is real, is even and is odd as a function
of . A general question of whether a particular amplitude
characteristic can be realized as a causal system is answered
by the Paley–Wiener criterion. Consider a specific magnitude
of a transfer function . It can be realized by means of
a causal system if and only if the integral

(4)

is bounded. Then, a phase function associated with
exists such that the impulse response is causal. The
Paley–Wiener criterion is satisfied only if the support of
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is unbounded. Otherwise, would be equal to
zero over finite intervals of frequency, and this would result
in infinite values of the .

Provided has a causal representation, one can write
[4]

(5)

(6)

and also,

(7)
In addition, if is bounded at the origin, then we have

(8)

(9)

Here, the symbol defines the Hilbert transform. It consti-
tutes a convolution operation with the function , which
is not defined at . Hence, both (8) and (9) have to be
interpreted in the principal-value sense. The last two integrals
are defined in terms of the Hilbert transforms and has been
defined using Cauchy principal values. Note that (8) and (9)
hold for nonminimum phase systems. The only restriction is
that be causal. This restriction holds for most practical
systems.

III. A PPLICATION OF THE PRINCIPLES OFHILBERT

TRANSFORM FORPHASE RECOVERY

The analysis of the previous sections define the transfer
function over the infinite angular frequency
interval . However, in practice, and
is specified only over a finite segment. Hence, the analysis
of the Section II is modified. The modification is carried out
by assuming and as periodic functions and are
denoted by and . For computational reasons,
this is done as illustrated in [5]. We have earlier carried out
computations using those principles of [5] in [6]. Under that
assumption, since is even with a period of from

to , one can write

for

(10)
where for are the discrete Fourier cosine
transform of in the half-period . are certain phases
associated with the coefficients. The number of terms of the
cosine series may be finite or infinite. However, for numerical
computations, we take a finite number of terms of the series
and, thus, the upper limit of the summation is replaced by.

By taking the Hilbert transform of (10), one obtains from (8)

for (11)

The point to make here is that the same Fourier coefficients
that are used in (10) are also being used in (11), so that (10)
and (11) are related through the coefficientsand .

Now, if we are given the magnitude response of the system,
i.e., power spectrum, then

for

(12)

Now, given the power spectrum of the system, i.e., given
for , then one can now utilize an

optimization routine to solve for the ’s and ’s to minimize
the error function given by

for

(13)

Once the unknown coefficients in (12) are known, the non-
minimum phase function can be derived from

(14)

The phase function associated with the amplitude
can indeed be either nonminimum or minimum phase,

as no restrictions has been placed on its realization.

IV. NUMERICAL IMPLEMENTATION

Since the numerical optimization process involved in (12) is
highly time consuming, a good initial guess greatly improves
the computation time. In order to achieve a good initial guess,
we start with the power spectrum for and generate
from it the minimum-phase realization. We make sure that the
function is defined between . Next, we utilize (1) to
obtain the minimum phase response of the system, .
By utilizing the minimum-phase function, one can obtain an
estimate of the real part of the transfer function as

for (15)

We then obtain the discrete cosine transform of to
obtain the coefficients , , because of (10). The

coefficients ’s are selected in such a way that the ratio
of the maximum value of the coefficients to absolute value of

is equivalent to the number of effective digits available in
the given data for the power spectrum (i.e., equivalent to the
signal-to-noise ratio of the data).

The initial guess for all are set to zero and the optimiza-
tion of (12) is carried out for the unknown parameters
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( of ’s and of ’s). The computation of the series
of ’s during the error minimization iteration process can be
done efficiently by utilizing the Fourier cosine transform and
the sine transform. A point to note here is that it has been our
experience that for a wide class of problems, the parameter
has practically no influence on the optimization process for the

’s and on the final solution (14). Hence, for most cases, it
is necessary to compute only the coefficients of .

V. PHASE SYNTHESIS OF FAR-FIELD

ANTENNA POWER PATTERNS

We know that the far field of an electromagnetic system
is proportional to the Fourier transform of the current dis-
tribution. Since all antennas are of finite spatial size, this
is equivalent to saying that the spatial current distribution
is causal. Then, the real and imaginary parts of the mag-
netic vector potential are related by the Hilbert transforms
because of the causal current distributions. Hence, given the
magnitudes of the magnetic vector potentials (or the far fields
power patterns they are related), one can utilize the principles
presented earlier to generate the far-field phase pattern, which
is often nonminimum phase.

Please note that for any current distributions, which are
directed in the -direction and are expressed as

(16)

the magnetic vector potential is given by

(17)

where and is the spatial far-field variable.
Hence, , or more exactly,

is the Fourier transform of the “causal”
current distribution . For illustration purposes, we
set . Further, we restrict the current distribution to the

plane (i.e., ), so that we have

(18)

and since the far field, , we have

(19)

where are some functions of. Therefore, the real and
the imaginary parts of are related by the Hilbert transform.
In general, we are given the power field patterns
and, hence, we transform the field patterns to by
utilizing the following transformation:

(20)

where . The rationale of using (20) is that the real
and imaginary parts of the magnetic vector potential are related

Fig. 1. Magnitude plot of the far field of a dipole antenna.
! = (x � 512)=128 ! x.

by the Hilbert transform, but that does not apply to the fields,
as is seen from (20).

In (20), we need to note that it is , not , which
corresponds to the frequency variable. The -field data we
get, in general, will be equispaced in-space, i.e., we will
have for , . However, the data we
need in order to do optimization should be equispaced in
space, i.e., we should get the data in the form of ,

. Therefore, before we
carry out the numerical optimization, we need to interpolate
the data to make them equispaced in the space. This is
required for efficient computation of the series in (10) and (11)
by the Discrete sine and the cosine transforms [6].

Finally, we need to know how to scale the data into
. Because of the variation of , we can only

get the data for . However, if we consider
the field pattern as the Fourier transform of the current
distribution, we will have the data for . What we
need to do is to scale the range offrom to that
of for numerical computations [5].

Fortunately, for large , the fields in the invisible region
will become zero. Thus, if we can regard

for , we can scale into and
then use (13) to perform the optimization. Also, we need
to point out that by assuming corresponding to

, we only perform optimization in that range.

VI. EXAMPLES

As a first example, consider a half-wavelength long-
directed transmitting dipole of radius centered at the
origin. The dipole is fed at the center with 1.0 V excitation.
The magnitude response of the far field is given in Fig. 1.
The -axis is . The region has been divided
into 1024 subsections so that 512 is the value corresponding
to . The region then corresponds to
384 to 640 (i.e., ). The reconstructed phase
utilizing the technique described in the paper is shown by a
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Fig. 2. Reconstructed phase (solid line) with the actual phase (dotted line)
associated with Fig. 1.
 = (x � 512)=128 ! x.

Fig. 3. Difference between the reconstructed phase and the actual phase.
! = (x � 512)=128 ! x.

solid line in Fig. 2. Numerically, this has been accomplished
by computing (14) utilizing the coefficients and obtained
from the minimization of the error function in (13). The
true phase calculated by the computer code analysis of wire
antennas and scatterers (AWAS) [7] is shown by a dotted line.
In Fig. 3, we show the difference between the true phase and
the reconstructed nonminimum phase, and it is a straight line.
This linear-phase function is due to the choice of the physical
origin of the coordinate system for the half-wave dipole. The
dipole is centered at the origin and, hence, is not strictly a
“causal” function. The delay (linear-phase function) accounts
for this spatial displacement of the origin.

For the second example, we consider two-directed dipoles
of lengths 0.83 and radius 0.001, both oriented along the-
axis. One is centered at the origin and the other one is centered
at 1.25 away from the origin, so that they are separated
by 0.42 from end to end. Both the dipoles are center fed
and excited with 1.0 V, but of opposite phase. The-axis is

and it is given by . The magnitude

Fig. 4. Magnitude plot of the far field of twoz-directed dipoles.
! = (x � 512)=128 ! x.

Fig. 5. Reconstructed phase (solid line) with the actual phase (dotted line)
associated with Fig. 4.! = (x � 512)=128! x.

response is shown in Fig. 4, which has been computed using
the AWAS code [7]. The true (dotted) and the reconstructed
(solid) phase response is shown in Fig. 5. Again, if we observe
the difference between the two phases in Fig. 6, note that
it is almost a straight line, except for a couple of glitches.
The glitches occur at pattern minimums which are 40 and 70
dB down and, hence, computation of phase by (14) becomes
inaccurate as both the numerator and denominator values are
small. However, since the pattern magnitudes are quite small,
the glitches in the reconstructed phase is not a serious source
of error.

As a third example, consider a three-element-directed half-
wave array of 0.001 radius spaced a half-wavelength apart
along the -axis, all located in the plane. All three
elements are 0.5long and are excited with 1.0 V excitation.
The magnitude-power pattern for the electric field for

is given by Fig. 7, computed by the AWAS code. The
scale of the -axis in Fig. 7 is given by .
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Fig. 6. Difference between the reconstructed phase and the actual phase.
! = (x � 512)=128 ! x.

Fig. 7. Magnitude plot of the far field of threez-directed planar dipoles.
! = (x � 512)=128 ! x.

We need to note for this case, for , the in
(19) is a function of , so we still can use the analysis
presented earlier to do the optimization. In Fig. 8, the original
phase, depicted by a dotted line, is displayed along with the
reconstructed phase, shown by the solid line. Again, for both
Figs. 8 and 9, the -axis is . In Fig. 9, it
is seen that the difference between the two phases is almost
a straight line. There is, however, a glitch in the linear-phase
difference, again where the value of the pattern is minimum.

Finally, we test this theory on measured data. The exper-
imental data consists of the -parameter of a microwave
bandpass filter measured in the band of 4.31 to 7.42 GHz at
256 equally spaced points. It is important to note that is
often a nonminimum phase function, whereas is always
minimum phase. The magnitude response is shown in Fig. 10.
The -axis corresponds to frequency, the origin corresponds
to 3.532 GHz, and the plot extends to 8.19 GHz so that

GHz. The measured -response
below dB is discarded along with the phase. The actual

Fig. 8. Reconstructed phase (solid line) with the actual phase (dotted line)
associated with Fig. 7.! = (x � 512)=128! x.

Fig. 9. Difference between the reconstructed phase and the actual phase.
! = (x � 512)=128 ! x.

Fig. 10. Magnitude response of thes21-parameter of a filter.
f = 3:53 + 0:7775�x ! x.
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Fig. 11. Reconstructed phase (solid line) with the actual phase (dotted line)
associated with Fig. 10.f = 3:53 + 0:7775�x ! x.

Fig. 12. Difference between the reconstructed phase and the actual phase.
f = 3:53 + 0:7775�x ! x.

phase (dotted line) and the reconstructed phase (solid line) is
shown in Fig. 11. Fig. 12 provides the difference between the
two, which again is similar to a linear phase.

For all the examples described here, the initial starting guess
was the minimum-phase response for the phase function, and
they are no where near the true solution. Also, the difference
between the reconstructed and the true phase function is
always a linear phase, as we do not have any information about
how much delay the system introduces to the input function.
The magnitude response contains only the information about
the power density.

VII. CONCLUSION

A method based on the Hilbert-transform technique is
outlined to generate the nonminimum phase function of elec-
tromagnetic systems. Currently work is under way to extend
the formulation to the multidimensional case.
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