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Generation of Nonminimum Phase
From Amplitude-Only Data

Tapan K. SarkarFellow, IEEE,and Bin Hu

~ Abstract—A method is presented for the generation of nonmin- phase to the phase of the transfer function with a uniform
imum phase from amplitude-only data. The nonminimum phase amplitude is equivalent to a pure delay in the time domain.
is generated utilizing the principles of causality and the Hilbert Since we are dealing with linear-shift invariant systems (as

transform. The application of the theory has been applied to . .
some antenna radiation-power patterns and to measured transfer the response of the system is the same independent of the

functions of microwave filters to illustrate the applicability of this ~ time origin), changing the impulse response of the system

approach. by a time shift does not alter the transfer function of the
Index Terms—Amplitude-only, Hilbert transform, nonmini- original system, except that the phase spectrum is modified by
mum phase. a linear-phase function. The slope of this linear-phase function

is equivalent to the time delay. Also, the amplitude spectrum
of the transfer function is unaltered by providing a delay to
. INTRODUCTION the impulse response of the system at hand.

ECONSTRUCTION of phase from amplitude-only data In Section II, we present the more general amplitude—phase
is an important problem. For minimum phase systemeelationship of a nonminimum phase system based on the prin-

the reconstruction of phase from amplitude-only data is radiples of causality. In Section Ill, the computational method

atively straightforward as the phase response is given by tiseoutlined. In Section IV, we describe the numerical imple-
Hilbert transform of the log of the magnitude of the amplitudenentation of this technique. Section V describes how this
data [1]-[3]. In other words, the minimum phase as a functidechnique can be applied for the realization of nonminimum
of frequencyw is given byarg[X (w)] and is expressed as phase from the field power patterns. Typical numerical results

are presented in Section VI, followed by a conclusion in

1 = In| X (A ;
arg [X (w)] = —=P / XL (1) Section VII.
T Jog A—W
where P denotes a principal-value integral, as the integrand Il. PROPERTIES OFTRANSFER FUNCTIONS
has a singularity and is not integrable. The integral in (1) only BASED ON CAUSALITY

exists in a principal-value sense. However, this property givena f,nction 2(t) is said to be “causal” if
by (1) of a linear-time invariant system does not hold if the
system is not minimum phase. The minimum-phase property z(t) =0, whenevert < 0. (2)

of a transfer functiorX (w) refers only to all the zeros of (s). h ¢ funct ise in th ¢ |
The zeros must lie in the left haffs = o + jw with o < 0) These type of functions arise in the study of causal systems

of the s-plane. If the system is not minimum phase (i.e., whef’d aré of obvious importance in describing phenomena that
some of the zeros of the transfer function may be on th@ve well-defined “starting points.” _

right half-plane), then (1) does not hold. Most electromagnetic -6t #(t) be a real causal function with Fourier transform
systems have a nonminimum phase response. Hence, (1) h4%): and letfi(w) andI(w) be the real and imaginary parts
very little use for the practical problems. However, there is X (w). Then,

more g_enera_l result o_f the !—|i|bert transf(_)r_m, which is based on X(w) = R(w) + jI(w) = |X(w)|ej¢('“’). (3)
causality. This result is valid for a nonminimum phase system.

We utilize the principle of causality to do nonminimum phas8incex(¢) is real, R(w) is even and (w) is odd as a function
realizations. The principle of causality implies that the functioaf w. A general question of whether a particular amplitude
() = 0for ¢ < 0 and is nonzero otherwise. It is important atharacteristic can be realized as a causal system is answered
the onset to point out that the phase realization (be it minimupy the Paley—Wiener criterion. Consider a specific magnitude
or nonminimum phase) is not a unique problem. A linear-phaséa transfer functiori.X (w)|. It can be realized by means of
term may be added to any phase function without altering iscausal system if and only if the integral

amplitude spectrum. This is because the addition of a linear /oo | X (w)|
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| X (w)| is unbounded. OtherwiséX (w)| would be equal to The point to make here is that the same Fourier coefficients
zero over finite intervals of frequency, and this would resutbat are used in (10) are also being used in (11), so that (10)

in infinite values of thdn|X (w)| = . and (11) are related through the coefficieafsand ¢;.
Provided X (w) has a causal representation, one can write Now, if we are given the magnitude response of the system,
[4] i.e., power spectrum, then
9 oo - 2 _ 2 2
x(t) = —/ R(w) coswt dw, 0<t (5) [ X ()" = [R(w)” + |I(w)]
TJo ~ |Ry(w)|* + |Ip(w)]?, for0<w<nw
2 /°° ) 2
z(t) = —— I{w) sin wt dw, 0<t (6) i
) T Jo (w) = ao—i-Zancos(nw—i—(/)n)
and also, n=1
2
/ |.’17(t)|2 dt = —/ |R(w)|2 dw = —/ |I(w)|2 dw. + Zan sin (nw+¢n) (12)
0 TJ—o0 TJ oo el

() : . .
In addition, if z(¢) is bounded at the origin, then we have NOW, given the power spectrum of the system, i.e., given
| X (w)]? for 0 < w < m, then one can now utilize an

R(w) = _l/ ﬁ ds = —H[I(w)] (8) optimization routine to solve for the;'s and¢;’s to minimize
Mmoo W— S the error functionE(w) given by
I(w) = 1 / ELCR H[R(w)]. 9) o 2
TS oo W= S B(w) = ||X(w)]* - ao—i—Zan cos (nw + ¢p,)

Here, the symboH[-] defines the Hilbert transform. It consti- n=1
tutes a convolution operation with the functiayrw, which 0o 27?2
is not defined atv = 0. Hence, both (8) and (9) have to be _ Z“" sin (nw + ¢n) 7 for 0 < w < .
interpreted in the principal-value sense. The last two integrals =
are defined in terms of the Hilbert transforms and has been (13)

defined using Cauchy principal values. Note that (8) and (9) o ]
hold for nonminimum phase systems. The only restriction f3nce the unknown coefficients in (12) are known, the non-
that z(#) be causal. This restriction holds for most practicaninimum phase function can be derived from

systems. _1 [ {(w)
P = teo —=
(w) = tan {R(w)
[ll. A PPLICATION OF THE PRINCIPLES OF HILBERT L[ = ansin (nw + )
TRANSFORM FORPHASE RECOVERY = tan =5 - (14)
ao+ >, Gpcos(nw+ ¢r)

Thfa analysis o‘f the previous .se.ct.ions define the transftghe phase function®(w) associated with the amplitude
function E(w) + jI(w) over the infinite angular frequency| x (,,)| can indeed be either nonminimum or minimum phase,

interval —oo < w < oo. However, in practice(w) andI(w) g no restrictions has been placed on its realization.
is specified only over a finite segment. Hence, the analysis

of the Section Il is modified. The modification is carried out
by assumingR(w) and I(w) as periodic functions and are _ o } ) )
denoted byR,(w) and I,(w). For computational reasons, Since the numenqal optimization process mvolved.ln (12)is
this is done as illustrated in [5]. We have earlier carried ofighly time consuming, a good initial guess greatly improves
computations using those principles of [5] in [6]. Under thdhe computation time. In order to achieve a good initial guess,

assumption, sincek,(w) is even with a period ofr from We start with the power spectrum fo¥(w) and generate
_r to &. one can write from it the minimum-phase realization. We make sure that the

oo function is defined betwedh< w < w. Next, we utilize (1) to
R, (w) = ag + Za" cos (nw + ¢y,), foro<w< obtain the minimum phase response of the systgm,(w).
o By utilizing the minimum-phase function, one can obtain an

(10) estimate of the real part of the transfer function as
where q; for ¢ = 0,-.-, > are the discrete Fourier cosine

transform of R(w) in the half-periodr. ¢,, are certain phases Ruin(w) = [H(w)[ cos [prim(w)],  for 0 <w <. (15)
associated with the coefficients. The number of terms of the \We then obtain the discrete cosine transformAyf;, (w) to
cosine series may be finite or infinite. However, for numericabtain the coefficientsi, a1, ---,ay, because of (10). The
computations, we take a finite number of terms of the serigs coefficientsa;'s are selected in such a way that the ratio
and, thus, the upper limit of the summation is replaced\Wy of the maximum value of the coefficients to absolute value of
By taking the Hilbert transform of (10), one obtains from (8),  is equivalent to the number of effective digits available in

IV. NUMERICAL IMPLEMENTATION

L(w) = H[R,(w)] the given data for the power spectrum (i.e., equivalent to the
oo signal-to-noise ratio of the data).
= —Zan sin (nw + ¢y, ), for0<w<w. (11) The initial guess for allp,, are set to zero and the optimiza-
n=1 tion of (12) is carried out for the N + 1 unknown parameters
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(N +1 of a¢;’'s and N of ¢;'s). The computation of the series o
of a;’s during the error minimization iteration process can be

done efficiently by utilizing the Fourier cosine transform and
the sine transform. A point to note here is that it has been our-4-
experience that for a wide class of problems, the paramgter

has practically no influence on the optimization process for the
a;'s and on the final solution (14). Hence, for most cases, it -8

is necessary to compute only tidé+ 1 coefficients ofa;. 2 ol ]
V. PHASE SYNTHESIS OF FAR-FIELD i l
ANTENNA POWER PATTERNS 14t .

We know that the far field of an electromagnetic system _is
is proportional to the Fourier transform of the current dis-
tribution. Since all antennas are of finite spatial size, this
?s equivalent to saying that thg spgtial current distribution e e o0 60 620
is causal. Then, the real and imaginary parts of the mag-
netic vector potential are related by the Hilbert transfornfdd- 1. Magnitude plot of the far field of a dipole antenna.
because of the causal current distributions. Hence, given the (v = 51)/128 — w.
magnitudes of the magnetic vector potentials (or the far fields
power patterns they are related), one can utilize the principles
presented earlier to generate the far-field phase pattern, wHihthe Hilbert transform, but that does not apply to the fields,

-18}

is often nonminimum phase. as is seen from (20).
Please note that for any current distributions, which are!n (20), we need to note that it isosf, not ¢, which
directed in thes-direction and are expressed as corresponds to the frequency variable The F-field data we
get, in general, will be equispaced éspace, i.e., we will
@ € [~a; q] have E,(8) for # = 0, 1°,---,180°. However, the data we
Jo(x, y, 2)y 7 € [ ] (16)  need in order to do optimization should be equispaceas
€[5 0] space, i.e., we should get the data in the formHpfcos @),
the magnetic vector potential is given by costf = —1,---,0, 1/N,2/N,--- 1. Therefore, before we
carry out the numerical optimization, we need to interpolate
_¢ J’”/ da:/ dy/ dz J(z, y, 2) the data to make them equispaced in thef space. This is
drr J_, —c ’ required for efficient computation of the series in (10) and (11)

-exp [jkzsin @sin ¢ + jkysinfcos ¢ + jkzcosf] Dby the Discrete sine and the cosine transforms [6].
(17) Finally, we need to know how to scale the data into
we[—m, w]. Because of the variation afos#, we can only
wherek = 5% andr is the spatial far-field variable. get the data fof2 = cosfe[—1, 1]. However, if we consider
Hence, [9 ¢, or more exactly, A.[ksinfsing; the field patternAd. as the Fourier transform of the current
ksin @ cos ¢; kcos 6] is the Fourier transform of the “causal”distribution, we will have the data fdRe[—oo, oc]. What we
current distribution/.(z, y, #). For illustration purposes, we need to do is to scale the range @ffrom [—oc; oo] to that
set¢ = 0. Further, we restrict the current distribution to th@f we[—, =] for numerical computations [5].
y = 0 plane (i.e.,b = 0), so that we have Fortunately, for large, the fields in the invisible region
o—ikr A.(©) will become zero. Thus, if we can regarl(©2) =0
A, / da:/ dz J.(z, z)e?k=es 8 (18)  for |Q| > Qo, we can scalée[—Qg, Q] into we[—x, 7] and
—a —c then use (13) to perform the optimization. Also, we need
and since the far fieldE = —jwA, we have to point out that by assumin§e[—1, 1] corresponding to
o we[—wo, wo], we only perform optimization in that range.
Eﬂ(e) = jwsinf fun(e) (19)

where f,,.(6) are some functions &. Therefore, the real and VI. EXAMPLES
the imaginary parts ofl, are related by the Hilbert transform.
In general, we are given the power field pattefi ()|
and, hence, we transform the field pattemg6) to A.(6) by
utilizing the following transformation:

As a first example, consider a half-wavelength loag
directed transmitting dipole of radius001X centered at the
origin. The dipole is fed at the center with 1.0 V excitation.
The magnitude response of the far field is given in Fig. 1.

. 5 i) The z-axis is2. The region—4 < € < 4 has been divided
Ey() =jv1-Q Z“ne njw (20) into 1024 subsections so that 512 is the value corresponding
" to @ = 0. The region—1 < © < 1 then corresponds to
where? = cosf. The rationale of using (20) is that the reaB84 to 640 (i.e.f2 = = — 512/128). The reconstructed phase
and imaginary parts of the magnetic vector potential are relatetilizing the technique described in the paper is shown by a
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Fig. 2. Reconstructed phase (solid line) with the actual phase (dotted likéy. 4. Magnitude plot of the far field of twoz-directed dipoles.
associated with Fig. 1Q = (x — 512)/128 — =. w = (x —512)/128 — «=.
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Fig. 3. Difference between the reconstructed phase and the actual phase.

w = (r—512)/128 — w. Fig. 5. Reconstructed phase (solid line) with the actual phase (dotted line)
associated with Fig. 40 = (x — 512)/128 — .

solid line in Fig. 2. Numerically, this has been accomplished
by computing (14) utilizing the coefficients and¢; obtained response is shown in Fig. 4, which has been computed using
from the minimization of the error functioB'(w) in (13). The the AWAS code [7]. The true (dotted) and the reconstructed
true phase calculated by the computer code analysis of w{gmlid) phase response is shown in Fig. 5. Again, if we observe
antennas and scatterers (AWAS) [7] is shown by a dotted litbe difference between the two phases in Fig. 6, note that
In Fig. 3, we show the difference between the true phase aihds almost a straight line, except for a couple of glitches.
the reconstructed nonminimum phase, and it is a straight lirféhe glitches occur at pattern minimums which are 40 and 70
This linear-phase function is due to the choice of the physicdB down and, hence, computation of phase by (14) becomes
origin of the coordinate system for the half-wave dipole. Thimaccurate as both the numerator and denominator values are
dipole is centered at the origin and, hence, is not strictly ssmall. However, since the pattern magnitudes are quite small,
“causal” function. The delay (linear-phase function) accountie glitches in the reconstructed phase is not a serious source
for this spatial displacement of the origin. of error.

For the second example, we consider twdirected dipoles  As a third example, consider a three-elemexirected half-
of lengths 0.83 and radius 0.004, both oriented along the- wave array of 0.001 radius spaced a half-wavelength apart
axis. One is centered at the origin and the other one is centeadmhg they-axis, all located in ther = 0 plane. All three
at 1.25 away from the origin, so that they are separateglements are 056long and are excited with 1.0 V excitation.
by 0.42\ from end to end. Both the dipoles are center fe@lhe magnitude-power pattern for the electric fi¢fg,;| for
and excited with 1.0 V, but of opposite phase. Thaxis is ¢ = 90° is given by Fig. 7, computed by the AWAS code. The
Q and it is given byQ = (z — 512)/128. The magnitude scale of ther-axis in Fig. 7 is given by = (z — 512)/128.
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Fig. 7. Magnitude plot of the far field of three-directed planar dipoles.

w = (x —512)/128 — x. Fig. 9. Difference between the reconstructed phase and the actual phase.
w = (x —512)/128 — «=.

We need to note for this case, fgr = 90°, the f,,.(6) in
(19) is a function ofcos #, so we still can use the analysis o . . . ;
presented earlier to do the optimization. In Fig. 8, the original
phase, depicted by a dotted line, is displayed along with the
reconstructed phase, shown by the solid line. Again, for both
Figs. 8 and 9, the-axis isQ = (z — 512)/128. In Fig. 9, it
is seen that the difference between the two phases is almost®[ 1
a straight line. There is, however, a glitch in the linear-phase
difference, again where the value of the pattern is minimum®
Finally, we test this theory on measured data. The exper-
imental data consists of the,;-parameter of a microwave
bandpass filter measured in the band of 4.31 to 7.42 GHz at"[ i
256 equally spaced points. It is important to note thatis
often a nonminimum phase function, whereas is always
minimum phase. The magnitude response is shown in Fig. 10.
The z-axis corresponds to frequency, the origin corresponds —originai— , ) ,
to 3.532 GHz, and the plot extends to 8.19 GHz so that *° 100 150 200 250 300 350
[ = (z x0.7775) 4- 3.5325 GHz. The measuresh;-reéSpoNsSe Fig. 10. Magnitude response
below —10 dB is discarded along with the phase. The actudl= 3.53 + 0.7775*x — .

of thesy;-parameter of a filter.



1084 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 8, AUGUST 1998

200 ; . . . ; VIl. CONCLUSION

A method based on the Hilbert-transform technique is

_ outlined to generate the nonminimum phase function of elec-

‘ool ' = | tromagnetic systems. Currently work is under way to extend
the formulation to the multidimensional case.
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